First report of vascular wilt caused by *Fusarium proliferatum* on chickpea in Cuba

Y. Duarte-Leal 1*, B. Martínez-Coca 1, A. Echevarría-Hernández 2, E.S. do Carmo de Souza 3, R.N.G. Miller 3 and A.C. Café-Filho 1

1 Plant Mycology Laboratory, Phytopathology group, National Center for Animal and Plant Health (CENSA), CP 32700, San José de las Lajas, Mayabeque, Cuba; 2 Unit Scientific Technological of Base “Los Palacios”, Km 1 ½ road La Francia, Los Palacios, Pinar del Río, Cuba; 3 Institute of Biological Sciences, University of Brasilia, Brazil

*E-mail: yduarte@ceasa.gov.br

Received: 20 Apr 2019. Published: 08 Jun 2020.

Chickpea (*Cicer arietinum*) is one of the most important legume crops, constituting more than 20% of grain production worldwide, and providing a significant carbohydrate and protein source for human and animal consumption (Arefian et al., 2014). In Cuba, production still does not meet the demands of the population, making it necessary to import (Echevarria et al., 2014). The diseases that cause the greatest loss in chickpea yields are root rots, mainly caused by different species of *Fusarium*, e.g. *F. oxysporum* f. sp. *ciceris*.

During the 2014-2015 harvest, field samples of wilting chickpea plants with chlorotic and necrotic roots were taken to the laboratory at the National Center for Animal and Plant Health (CENSA), Mayabeque Province, Cuba. Samples of necrotic roots were surface-sterilised with sodium hypochlorite solution (1%), and ethanol solution (70%), rinsed three times with sterile water, air dried, and cultured on potato dextrose agar (PDA, Biocen) plus chloramphenicol (0.01 g/l) at 25 ±2°C for one week. Several fungal colonies were isolated, which were transferred to fresh PDA plates to obtain pure cultures (French & Hebert, 1982). The aerial mycelium of all samples was initially white but became violet with age (Fig. 1). Macroconidia were slender and to almost straight, with thin walls, apical cell curved, basal cell poorly developed and 3 to 5-septate. Microconidia were pyriform, 0-septate, found in false heads, with visible walls, apical cell curved, basal cell poorly developed and 3 to 5-septate. The isolates were identified as *Fusarium proliferatum* via root immersion. A 100 ml of conidial suspension (1 × 10⁶ spores/ml) of each isolate was added to Petri dishes. Roots of the plants were immersed into this conidial suspension for 10 minutes. Sterile water was used for controls. The inoculated plants were subsequently replanted into their original pots and symptom development was checked daily. The symptoms of root rot were observed visually 10 days post-inoculation. Pathogenicity tests were performed twice under the same conditions. Symptoms identical to those of natural infections were observed on all inoculated plants but not on the negative controls. The isolates of *F. proliferatum* were reisolated from the inoculated plants and they were morphologically identical to the original isolate, thus fulfilling Koch’s postulates. To our knowledge, this is the first report of *Fusarium proliferatum* on *C. arietinum* in Cuba.

Acknowledgements

The authors would like to thank to Brazilian agency for Coordination of Improvement of Higher Level Personnel (CAPES) for the scholarship granted to the postgraduate student Y. Duarte-Leal in the framework of the Cuba-Brazil collaboration project.

References