While *Rice stripe necrosis virus* (RSNV, *Benyviridae*) has been reported on rice plants on two continents, little is known about the diversity of this multipartite virus which is transmitted by the plasmopodiphorid protist *Polymyxa graminis*. First identified in 1983 in the Côte d’Ivoire (Fauquet & Thouvenel, 1983), the disease had previously been observed in Sierra Leone without formal identification of the causal agent (Buddenhagen, pers. comm.). Later, the virus was reported in South and Central America (Colombia, Ecuador, Panama and Brazil) causing up to 40% yield losses (Morales et al., 1999). Recently, RSNV was identified for the first time in several African countries including Burkina Faso (Sérémé et al., 2014), Benin (Oladare et al., 2015) and Mali (Decroës et al., 2017) suggesting a re-emergence of the virus in Africa. In 2019, symptoms of leaf-crinkling and stripe necrosis were observed on a rice plant from the Bo District in Sierra Leone (Fig. 1). Leaf samples were analysed by serological and molecular methods to confirm the presence of RSNV in Sierra Leone. RSNV was detected by plate-trapped antibody (PTA)- ELISA using a polyclonal antiserum against RSNV (Fauquet & Thouvenel, 1983).

The presence of the virus was confirmed after total RNA extraction using 0.05 g of leaves and the RNaseasy Plant Mini Kit (Qiagen) and RT-PCR amplification (10 U/μl M-MLV-reverse transcriptase, Promega; 10 U/μl Dynazyme, Finnzyme) as described previously (Sérémé et al., 2014, Oladare et al., 2015) with primers RSNV1-2901F 5′-AATCTGCGGCCTGTTTTGTA-3′ and RSNV2-5′-TGTGGCGTTTCCAGACCTAAA-3′ and RSNV2-5′-TATCACATGAGAATCCACCTAC-3′ / RSNV2-1223R 5′-ATACTCGGCCGCTTTGTTGTA-3′. Specific amplicons, 926 and 1241 nt in length, were generated corresponding to sequences in the helicase domain and the coat protein (CP) genes on RSNV RNA 1 and RNA 2, respectively. The amplicons were sequenced directly and the sequences deposited in GenBank (Accession Nos. MN750254 and MN750255, respectively).

The helicase sequence obtained from the Sierra Leone RSNV isolate showed 1.8-7.3% genetic distance with those from South America (5.6%; NC_038774) or Africa (5.2-6.5%; LK023710, MF115604, MF115605, MF115606, MF115608, MK170454, MK170455). Interestingly, the CP sequence from Sierra Leone is located at a basal position in the phylogeny (Fig. 2b).

To our knowledge, this is the first confirmed report of RSNV in Sierra Leone. Further studies are needed to assess the molecular and biological diversity of RSNV, the spatial distribution and the incidence of this re-emerging rice disease in Africa.

Acknowledgements

Drs. Tucker and Celli contributed equally as first authors of this report. This work was funded by the French National Research Agency (ANR-10-LABX-001-01) / Agropolis Foundation (1504-004).

References

©2020 The Authors

This report was published on-line at www.ndrs.org.uk where high quality versions of the figures can be found.