First report of *Phytophthora cinnamomi* associated with mortality of *Erica umbellata* natural shrubs in Spain

A. Acedo 1*, E. Cardillo 1, M.C. Pérez 1, M.C. Morales-Rodríguez 2, M.C. Rodríguez-Molina 2 and A. Pérez-Sierra 3

1 Instituto del Corcho, La Madera y el Carbón Vegetal (ICMC), Gobierno de Extremadura, Calle Pamplona, s/n. Apdo. 437-06800 Mérida, Spain; 2 Centro de Investigación Agraria “Finca La Orden-Valdesezquera”, Gobierno Extremadura, Finca La Orden, 06187 Guadajira (Badajoz), Spain; 3 Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

E-mail: angel.acedo@gobex.es

Received: 07 Jun 2013. Published: 17 Oct 2013. Keywords: heathland decline, vegetation decline

Erica umbellata (dwarf Spanish heath), a small heather native to the western Iberian Peninsula and northern Morocco, is appreciated as a melliferous and ornamental plant. This species forms large shrub communities in western Spain, usually in association with *Callicoma vulgaris*, *Pterospartum tridentatum* and *Halimium* spp. Several foci of heathlands dominated by *E. umbellata* showed decline and mortality in the Villuercas Mountains (Fig. 1), a protected natural area in eastern Extremadura (Southwestern Spain) during 2009. A total area of about 10 ha was affected.

During spring 2011, roots and rhizosphere soil samples from *E. umbellata* plants exhibiting dieback and mortality were collected. Small roots were plated onto NARPH *Phytophthora* selective medium (Hüberi et al., 2000) and incubated in darkness at 24°C. Soils were baited using seedlings of yellow lupin (*Lupinus luteus*). A *Phytophthora* sp. was consistently isolated from soil (8/11 samples) and roots (5/11 samples). Isolates were preliminarily identified as *P. cinnamomi* based on morphological and cultural traits. Isolates presented typical coralloid hyphae, hyphal swellings, thin-walled chlamydospores and non-papillate sporangia. In order to confirm the identification of the isolates, a nested PCR using specific primers was performed (Williams et al., 2009). Furthermore, the ITS region of one representative isolate was amplified and sequenced using ITS5 (Cooke et al., 2000) and ITS4 (White et al., 1990) primers. The ITS sequence (GenBank Accession No. KF318044) showed 100% homology with *P. cinnamomi* (AY302174.1) when subjected to an NCBI BLAST search.

A pathogenicity test was conducted with one collected isolate of *P. cinnamomi* and 30 healthy potted *E. umbellata* plants collected from unaffected natural areas. Fifteen randomly selected plants were inoculated with 8 mg agar mycelial plugs (6 mm diameter) previously incubated for six days in soil extract to induce sporulation and the remaining 15 plants were used as controls. *P. cinnamomi* agar plugs were introduced into the soil at the level of the root system, while the control plants were treated in the same way with sterile plugs. The plants were maintained in a controlled environmental chamber (24°C, 60% RH, 14 h light) for four weeks and were waterlogged for two days per week. After 14 days, some inoculated plants showed general wilting and a yellow discolouration of the leaves starting at the bottom of the twigs. Finally, all inoculated plants died, whereas none of the non-inoculated plants showed any of the described symptoms (Fig. 2). *P. cinnamomi* was re-isolated from 60% of the planted root fragments obtained from the inoculated plants (n=50), while the pathogen was not isolated from the roots of the control plants (n=50).

![Figure 1](http://dx.doi.org/10.5197/j.2044-0588.2013.028.008)

![Figure 2](http://dx.doi.org/10.5197/j.2044-0588.2013.028.008)

The results of this work indicate that *P. cinnamomi* plays a role not only in the decline of oak woodlands in the Iberian Peninsula (Brasier et al., 1993), but also in the mortality of large areas of natural heathlands, which should be considered in the management and afforestation programmes in these areas. To the best of our knowledge, this is the first report of *E. umbellata* as a natural host of *P. cinnamomi*. On the other hand, other *Erica* species of the Iberian Peninsula, including *E. arborea* and *E. lafastica* have been found to be resistant to *P. cinnamomi* infection (Moreira & Martins, 2005).

Acknowledgements

The authors would like to thank colleagues of the ICMC and Forest Management Service of the Government of Extremadura for their excellent technical assistance.

References

New Disease Reports is a peer-reviewed on-line journal published by the British Society for Plant Pathology. for more information visit http://www.ndrs.org.uk/