First report of wilt of almond caused by *Verticillium dahliae* in Tunisia

M.T. Nouri 1, A. Rhouma 2, M.A. Yahgmour 3, M. Mnari-Hatteb 1, B. Jraidi 1 and M.R. Hajlaoui 1*

1 INRA Tunisia, University of Carthage, 2049 Aiana, Tunisia; 2 Olive Tree Institute, Av. Hédi Karray, Tunis Belvedere, Tunisia; 3 Department of Plant Pathology, University of California, One Shields Ave., Davis, CA 95616

*E-mail: hajlaou06@gmail.com

Received: 10 Apr 2012. Published: 05 Nov 2012.

Almond (*Prunus dulcis*) cultivation in Tunisia dates back to ancient times and has been known since the Carthaginian era (Gouta et al., 2011). In some orchards, intercropping with olive and vegetables is a common practice. Environmental conditions are typically Mediterranean, and many fungal diseases affect almond trees in the region. During a routine survey in June 2010, almond trees (cv. Mazetto) grafted onto the rootstock ‘Garneri’ showed symptoms of yellowing, leaf fall and twig and branch dieback. Discoloration of vascular tissue was visible after cutting open affected stems (Fig. 1). These symptoms were observed in intensively managed orchards in the Northern part of Tunisia.

Samples were collected from branches and twigs showing the characteristic symptoms, and were kept on cold packs before bringing to the laboratory for isolations. Portions of symptom-bearing branches were surface sterilised with 2% sodium hypochlorite, then rinsed with sterile distilled water and allowed to air dry. Isolations from these tissues consistently yielded a *Verticillium* sp. on potato dextrose agar (PDA) amended with 25 mg/l of streptomycin sulphate. All isolates obtained from tomato (GU060637) were identical to *V. dahliae* (GenBank Accession Nos. JQ902034 and JQ902035) were identical to other sequences in the GenBank, and matched the sequence of a *V. dahliae* isolate for sequence JQ902034 while a set of control trees was similarly submerged in sterile distilled water. The inoculated trees were maintained in a glasshouse at daily average temperatures between 25° and 28°C and relative humidity was consistently 50-80%. Symptoms developed 60 days post inoculation and were typical of the original symptoms observed on diseased trees in the field. The symptoms consisted of chlorosis, wilting and necrosis of apical leaves that progressed downwards on the tree. *V. dahliae* was consistently re-isolated from infected vascular tissues of symptomatic trees as described above, completing Koch’s postulates. Non-inoculated plants remained healthy.

Although *V. dahliae* has been previously reported on artichoke (Jabnoun-Khiareddine et al., 2008) and olive trees (Triki et al., 2006) in Tunisia, this is the first report of *Verticillium* wilt on almond trees in Tunisia. At this time, the economic importance of *Verticillium* wilt on almond cultivation in Tunisia is limited. However, *Verticillium* wilt might become an important economic problem for almond farmers in the future, since almond cultivation is expanding in many agricultural areas previously dedicated to tomato crops.

References


Figure 1


This report was published on-line at www.ndrs.org.uk where high quality versions of the figures can be found.